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SOME PROPERTIES or : CONDENSING MAPS // ~~
~‘ /

Paul M assa t t  
~~~~~~~~~~~~~~~~~~

1. I n t r o d u c t i o n .

In 1939 , K u r a t o w s k i i  [19] introduced a measure  of noncompactness

of bounded sets in a metric space , called the Kuratowskii measure of

noncompactness , or a-measure. This along with the associated notion

of an a-contraction , has proved uselful in several areas of differ-

ential equations (see , for example , [12] , [14], and [25]).

_________________} Definition. Let X be a metric space. The a-measure is a map

“ : ~4 -* [0 ,°), where gj = {B C X/B is bounded) and a(B) =

inf{d/ there is a finite cover of B with sets in X whose diameter

is less than d}

Definition. T: X ÷ X is an u-contraction if there is a k C [0,1)

such that for all B € Q we have “ (TB) < k u ( B ) .

To generalize this notion people began to investigate

a-condensing maps.

Definition. T: X -* X is a-condensing if for all B c ~ we have

a(TB) < a(B) with equality if and only if c z (B)  = 0 .

The basic problem is to understand which properties of

a-contractions also hold for a-condensing maps. Recently, R ichard

Leggett [20] showed that if X is a Banach space, T is linear

and a-condensing , then there is an equiva1ent .n~rm in X for which

I is an a-contraction in the new norm . Sadovskii [25] showed by
fr~~~

4;
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transfinite induction that a-condensing maps have the fixed point

property-extending a result of Darbo [9] for a-contractions .

Another important contribution showing how many properties of

a-contractions arc true for a-condensing maps was made by Cooperman

[8]. Cooperman developed an ingenious technique which exploited

special proper ties of the a-measure.

The princi ple resul ts of this paper will be to generalize

several of the r e s u l t s  of Cooperman to more general measures of non-

compac tness as well as for certain set mappings. The proofs are

more elementary than the ones in Cooperman . However , the basic

lemma used by Cooperman which depended so much on properties of

a-measures is not generalized. In fact , we give an example showing

that it will not generall y be valid for arbitrary measures of non-

compactness.

Section 2 contains only notation and definitions. In section 3

we prove that a decreasing sequence of nonelnpty closed bounded sets

with general measure of noncompactness approaching zero must have

nonempty intersection. In section 4 ~~ show condensing maps are

asymptotically smooth. In section 5 we show the solution map T
~
x = y

as a function of y for {Tx} collectively condensing is upper

semi-continuous with mild continuity assumptions on In

section 6 we show results proved using Sadovskii’s method of trans-

finite sequences may be proved using ordinary sequences. We reprove

a theorem by Hale and Lopes that a-condensing , compact dissipative

maps have a fixed point , and show this holds for general measures

of nonconipactncss. In section 7 we discuss the basic lemmas of

Cooperman and their validity for general measures of noncompactness.

In sec iton 8 we show linear condensing maps with general measures of

~~ 1. — —

~
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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noncompac tncss arc cx-coI~tractjo1ls under some equivalent norm.

2. Defini tions and Notation.

Le t X be a comple te me tr ic  space , or a comple te me tr izable

linear topological vector space. When we speak of distance in the

la tter case we may use any metri c coinciding with the topology

on X. Le t .~~~~ b e the collec tion of bounded subse ts of X. For

any subset B of X , le t C l ( B )  denote the c losure  of B. Le t ~~
be the collection of subsets of X.

Definition 2.1. For any sequence (B~)~~ 1 C .Q, the w-limit set

of (B ) is defined by w ({B }) = 
~ 

Cl( U B.), or equivalen tly
k=l j>k 3

w ({B }) = {y C X: 3 in tegers nk 
-

~ ~~~, x ~ B such tha t X
k 

y).n k nk

Definition 2.2. A set A C X attracts a sequence of sets

C X if d (B ,A) 0 as n -
~

Definition 2.3. If H: ~~~~ ÷ ~~~~
‘ and B C .~~~~~~, the orbi t

• under H is defined by y
~ (B) = U H (B). The w-limit set w~ (B)

n 0
of B under II is defined by w11(B) = ~11( {H~ (B)} )  = fl Cl(U H3 (B)).

k=l j>k

When no confusion arises we may drop the subscript , H

Definition 2.4. A subset U C .~~~
‘ (i.e., a collection of subsets

of X) is invariant under H: .~~
‘ + .~~~

‘ if HU = U. It is

positively invariant if UU C U.

If 1: X + X is a map on X , then T induces a map i1: .~~~
‘ • .~4’

_ _  _ _  

_ _  

_ _
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by the relation i.~ (B) = U Tx for  any B £ ~~~~
‘ The above

x C B

defini tions coincide with the usual definitions of ui-limit set and

invariance.

Other mappings on a collection of subsets of X are useful .

We make the following definitions.

Definition 2.5. If II: ~~~
‘ -

~ S~’ i s  a g iven map, we say

II is of type I i f  11(B) = U [1 1(x)  : x C B)

U is of type 2 if 11(B) U{ 11((x
~

} ) :  fx 1
} is any

f i n i te subse t of B).

U is of type 3 if 11(B) U{II(K): K C B is compact).

Similar  de f in i tions appl y for H: .~~~~ ÷ .~~~~ or U: .Q -
~ .~~~~ .

A set operator of type I is a set operator of type 2 which in

turn is a set operator of type 3. If li
~ 

and are set operators

of the same type n, for n = 1 or 2 , then 111011
2 is a se t opera tor

of type n. This property may not hold for operators of type 3.

Examples:

( i )  If  T : X -* X then i : + ..~~~
‘ defined by i (B) =

U{T x C X / x C B )  is of type l.

(ii) If 1: X -‘ X , then y~ : ,~~~
‘ ÷ .~~~

‘ defined by y~ (B) =

positive orbit through B is of type 1.

(iii) If ‘F: X ÷ .~~~~ is a set valued map on X , then the map

iT: S~’ ÷ ~~~
‘ defined by i1(B) = U(Tx ~ ~~ x £ B) is of type 1.

(iv) If C C ~t is given , then H: .~~~
‘ + .~~~

‘ defined by either

11(B) B U C , B (DC , or B + C, is of type 1.

.4
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(v) II: ~‘ ~ •~~~~
‘ g iven by 11 (B) = co B = the convex hull

of B is of type 2.

(vi) 11 : ~~~
‘ 

~
‘ gi v e n  by 1 1(B)  = Cl (B) is of type 3.

D e f i n i t i o n  2 . 6 .  A m e a s u r e  of non compac tness  on X is a map

8: ~~ ÷ ( O ,~~) w i t h  the  p r o p e r t i e s  t h a t  ( i )  8( B )  = 0 if and only

if C l ( B )  is compact  and ( i i )  8(B)  < ~ (C) if B C C.

The u -m e a s u r e  of noncompactness  of K u r a t o w s k i i  de f ined  in the

introduction is a measure of noncompactness. It satisfies many

more properties , some of which will be required below . They will

be introduced as needed since one of our objectives is to understand

which basic properties of the u-measure imply certain results.

Dcfinition 2.7. If II: ~~~~~ ÷ .~~~~ , then H is  a 8-contraction if there

is a k £ [0 ,1) such that 8(11(B)) < k8(B) for any B C ~~~~. H

is 8-condensing if for each B C 
~~~~~~ , 8(11(B)) < 8(B) with equality

if and only if $(B) = 0. If I: X X and maps bounded sets to

bounded sets , we say T is a 8-contraction (8-nonexpansive , -

8-condensing) if the induced map iT: .~~~~ 
+ ~~ is a 8-contraction

(8-nonexpansive , 8-condensing).

In the applications it is sometimes convenient to not assume

H : ~~~~~ 
+ .~~~~ but only that II: .~~~~ + 

~~
‘; that is H may not take

bounded sets into bounded sets. One then calls the map a

conditiona l 8-contraction (conditional 8-nonexpansive , conditional

8-condensing) if the above properties hold for each B C .~~~~ for

• which 11(B) £ .~~~~ The results below hold in this more general

‘ 

~~~~~~ ~~~~~~~~~~~~
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situation , but we do not explicitl y state and prove them in this

genera l i ty since i t is onl y a minor technical detail.

Definition 2.8. Let II: ~~ 
-

~ and le t S be a collec t ion of

sets. A bounded set B dissipates S-sets under 11 if for any

• C £ 5, there  is an in teger n
0 (c) such tha t H1’(C) C B for

n > n0(C). If S = {{x}: x £ x } we say H is point dissipative ,

if S = {(J}: J CX  is compact) we say 11 is compact dissipative ;

if S contains a neighborhood of any point x ~ X , we say 1-1 is

local dissipative if S contains a neighborhood of any compac t set,

we say 11 is local c.mpact dissipative ; if S contains all bounded

sets of X ( S = 
~A ) ,  we say II is bounded dissipa tive or ultimately

bounded.

If  It is typ e 2 and Con t inuous  in the  I- I a u sd o r f f  m e t r i c , then

compac t dissipative , loc al dissipative and local compact dissipative

are equivalent.

Defini tion 2.9. A map 11: .‘?~ ..~1 is asymp totica l ly  smoo th if , for

any B C .~~~~ such tha t ~~~B) C ~~~~~ , there is a compact set J C X

such that J attracts B under H.

(SEE PAG E 6A FOR INSERT )

Lemma 2.1. If 1: X + X is a given map and iT: ~~~~

‘
+ .~~~

‘ is

the map induced by I , i1.(B) = U {Tx : x C B], then the following

are equivalen t to i1’: being asymptotically smooth:

( 1) for any B C •~~~~ such that y”
~(B) C 

~~~~~, there is a compact

set J that attracts B under 1;

~
‘ --~~~i’~ ‘~i~
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Asymptotically smooth maps p lay an impor tan t role in

stab i l i ty theory .  In f act, it is known (see [8] , [ 14]) tha t

II asymp totically smooth and compact dissipative implies there

i s  a m a x i m a l  compac t  i n v a r i a n t  set J for  I t which attracts

neighborhoods of compact sets. In particular , J is un i fo rmly

a s y m p t o t i c a l l y  s t a b l e .  I t  is i m p o r t a n t  t h e r e f o r e  to g ive

other characterizations of asymptotically smooth maps.
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(2) for  any B C ~ such that TB C B there is a compact

set J that attracts B under ‘F.

( 3) for  any B C .~4 there is a compact set J such that ,

for any £ > 0, there is an in teger n0 (B ,C) such that TnX C B

for n > 0 implies d(T11x ,J) < C f o r  a > n 0 (B , c) .

Lemma 2 . 1 s u g g e s t s  o t h e r  d e f i n i t ions of asymp totic smoo th for

m a pp ings  II :  .~~~~ . More precisel y one could def i ne asymp totic

smooth of type ( j ) , ~ = 1 ,2 by the r ela t ion s ( 1) and (2 )  in
.1

Lemma 2.1 , wi th I replaced by I I .  One f i n d s  a s y m p t o t i c  smooth (2)

defines a smaller clas s than asymptotic smooth (1).

3. A Pr operty of Measures of Noncompactness.

A classical result for the u-measure of noncompactness is that

a decreas ing SeqUen Ce  (B~ } of closed bounded sets with a(Bn) ÷ 0

has the property that d (Bn~
J) ÷ 0 as n ÷ fo r  some compact set J.

It is the purpose of this section to show this result is true for

more general measures of noncompactness. We need the following

l emma.

Lemma 3.1. If {Bn}~~~i 
is a sequence of bounded sets in X with

the property that every { ~~~~~ C X is precompac t if there is a

sequence of in teg ers 
~k 

• with Xk C B , then ui((Bn}) is
H 

nk

nonempty , compact , and attracts Bn~

Proof: w ({B~~}) ty C X/ there exists 
~~~~

, Xk C B~ such tha t
k

{x
k} converges to y}. w (B~ ) is nonemp ty since any sequence

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _  -. 

~~-
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sequence xk 
F.. B wi th n k 

-~ has a conve rg ing  subsequence  in
k

which must converge to a point in W ((Bn
})
~ 

W
~~

Bn)) is precompact

s inc e if we le t (y~ } be a sequence in W ({Bn
}) then there is a

sequence nk 
-

~~ ~~~~
, X~~ C wi th d(x~~y~) < ~-k But (x

k
} has.a

convergent  subsequence , hence  so does (y ~~}. A l l  that is left is to

show W ({Bn}) attracts B1,. Suppose i t  does n o t .  Then there is

an £ > 0 , 
~~ 

+ 
nk 

wi th d(x k , W ({Bn }) )  > C . But Xk

has a converging subsequence which must  converge to a point in

w ({B }). This is a contradiction. Q.E .D.

The orem 3 . 1 . I f  I~ is a measure of noncompactness  s a t i sf y ing

8(A U B) = 8(A) i f  B i s a f i n i te se t then any dec rea s ing

sequence 
~
8n~ 

C ~ o f n onem pty clo sed bounded sets sa t isf y ing

8(B n) 
-
~~ 0 must have fl B~ nonemp ty ,  compac t , and attracting Bn •

n 3
Proof: Let be a decreasing sequence of nonempty closed bounded

sets with ~ (B ) ÷ 0 . C lea r ly  w (B ) = fl B~ . Let -÷ ~ andn a 
~~~~~~

Xk 
C B . Then 8({xk}) ~ 

for any N since (xk
} minus a

nk
f i n i te number of poin ts i s a subse t of B~ . But then 8((xk

}) = 0

and Cx k) is precompact. Lemma 3 .1 impl ies  the resul t .

4. Di ssipative Processes.

The basic resul t of this section relates 8-condensing maps

to asymptotically smooth maps.

Theorem 4.1. Suppose 8 is a measure of noncornpac tness sa t i s fy ing

8(A U B) 8(A) if B is a finite set. If U: .~~~~ 
+ .~~~~ is

~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________________________
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8-condensing and of type  2 (sec D e f i n i t i o n  2 . 5 ) , t hen  11 is

a s y m p t o t i c a l l y  smooth .

Proof:  Le t  B 1)0 bounded and y~~(B) be bounded.  Let ~~(B) =

~~
Xk,n~ ‘1~ k~ 

-* 
~~~~

, 
i Let  P~~ x k , n k }) = {x

k}. Let

n = sup ff (Ph)/h C 1~4(B)}. Note n < -
~~ since y~ (B) is bounded.

We f i r s t  show t h e r e  is an h * = (x~ ,n~ } C ~~(B) such tha t

6(Ph *) = n .  Let  {h . }  C 1/(B) be a sequence w i t h  8 ( P h ~~) n . Let

h .  = ((xk,nk) 
C h./nk 

> j } .  Let  h * = U h .  r eo rde red  in any way .
3 3 j = 1  3

Then we have h* C ~~(B) and so ri > 8(h *) > 8(h~ ) = 6(h~) ÷

as j  ~~~. h ence , 6 (h  ) = n.

* * * 
.
~~~ * 

m

* 
Now for  eac h ( x

~~, n k ) C h there is a set {x~ ‘~ k 
- C

n - i  
* 

•
~~~ * •

~~~ ~~ 
m

I t  k (B) ~ Z such t h a t  X k C Il (Cx~ })  . Let g = U {x~ ,nk-l} ~~~~~~~~k=l

Hence n > 13(g*) > 13(It g *) > 6 ( h 1
~) = ii with equality if and only

if t3(g~) = 0. h ence Ti = 0.

Now Le mma 3 . 1 impl ies there is a J C X comp act , which

a t t r a c t s  {II n ( B ) )  or a t t r a c t s  B under the  map H.

Coroll ary 4.1. If 6 satisfies the conditions of Theorem 4.1 and

I: X ÷ X is B-conthnsing, then I is asymptotically smooth.

Coro l l a r y  1 .2. If B satisfies the conditions of Theorem 4.1 and

I: X -* ‘
~~ is 6-condensing , then 1’ is asymptoticall y smoo th.

Cor o l l a r y  4.3. If 8-satisfies tile conditions of Theorem 4.1 and

8(co B) = F ( B ) , I : X -
~ X is B-condensing, and Fl: ~~~~~~~~~ ~ is def ined

~~~1~.. 
~~~~ 

_ _ _ _  

- 
- 

~~~

. . .•  

~~~~ ii ~~~~~~~~
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11(B) = Co ‘[‘(B) th en 1 1 i s asymp tot i ca l ly  smoo th.  Fur thermore ,

if I is  con t i nu ous , then ii: .~~~~ ~~ d e f i n e d  by 11 (B ) = ci 11(B)

is asymptot icall y s m o o t h ,

Proof: 11 is clearl y 6-c ondensing and type 2, henc e we have the

f i r s t  p a r t  of t h e  co r o l l a ry . For the second part we note

I-1(cl B) C ci 11(B). Using this wb get  1T~ (B) C c i tI ”(B) and so

IT is asymp to t ic a l l y  smoo th.

C o r o l l a r y  4.4. If B s a t i s f i e s  tile c o n d i t i o n s  of C o r o l l a r y  4 . 3 ,

T: X ÷ X is B-condensing, P C X is compact , and H : .~~~~ ~~~~~ is

d e f i n ed b y 11 (B) c o ( T ( B )  U P) then h i is a symp tot i ca l ly  smoo th.
p If T is also continuous , then Fl is a lso  a sy m p t o t i c a l l y  smooth .

C o r o l l a r y  4.5. if B is a m easure  of n oncompac t nes s satisfying

8(A U B) = max{6(A),8(B)} and II is B-c ondensing, then Y~ : .~~~~ 
+

~~~~~~

i m p l i e s  ~~ is B -non ex p a rt s i v c .

Proof: As sume B(y~ (B)) > 8(B). Then B(y~ (B) )  = 8(B U Uy~ (B) )  =

max (6(B),8( hI y~ (B))} = B (It~~ (B)) < 8(’r~ (B)) which is a contradiction .

The last three corollaries are useful in showing several fixed

point theorems proved by Sadovskii’s method of transfinite sequences

may be proved w i t h  o r d i n a r y  sequences .  This  is i l l u s t r a t e d  in

Section 6.

‘1
, Theorem 4.2. Let B he a measure of noncompactness satisfying

8(A U B) = 8(A) i f  B is a finite set and either (1) 8 is continuous

‘— •‘

f -

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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in the llausdorff metric or (2) 1~
(]
~) = 6 (B) , and 6(A + B) = 8(A)

if 6(B) = 0.

I f  I I :  ~~ ~ is 8-condens in ~i and type 3 , then II is

asymp tot ica l ly  sm oo th.
L

Proof :  L et B ,Y~ (B) ~ ~~~. Let 1/’(B) = 
~~~~~~~~~~~~~ ~~k 

C h t ~~~~(B) , -

= 0, ilk ~~ } .  Let  1/(B) = ((xk , nk}/xk C 
n~ 

~k

= ~) ‘ ~~~~ n ]( } U ‘
~k 

for  II ’ C 1/’ (11) , ph = 
~~~k , nk} =

k
U {x

k
} for ii 1. 1/(B) . Let  Ti ’ sup {13(p ’ h ’ ) / h ’  C ~~~~~

‘ ( B ) }  . Le t
k

Ii = s u p ( 6 ( p h ) / h  C 1~ (B ) } . We f i r s t  show Ti = Ti ’ . T h i s  tak es the

most w o r k .  By the  method of Theorem 4 .1 , we show there  ex is t s

h~ * C ~ “ ( B )  w i t h  6 (h ~ *) = ii ’ . Let h;* = (J i*
fl

* } and
2* * 2* 2* 1* -k112 = 

~~~ 
,nk} with a finite set satisfying d(J k ‘~ k ~ 

< 2

2* 1* ~*and 
~k 

C ‘-1 k We claim 8(112 ) = 6 (h 1 ) . Bo th are in ~~~~~
‘ (B)

* 9*  * ~~* 2* 9*Case ( i ) :  Let = (Rk ,nk} with 1
~’k 

= 

~k 
if  k > Z and Rk

9* 1* 9* 1* _ 9
is a f i n i te se t wi th R~ c j~~ ~~~~~ ‘~~k ~ 

< 2 . if k < 9 .  Then

8(112
*) = 6(~~~~) 

-~ B (h *). Hence , 8(14
*) =

3* * 3* 1*
Case (ii): Let 113 = 

~
‘T k ‘~ k~ 

~ (~‘ (B) wi th 
~k 

C 
~k 

coun table
1* t *

and dense in . Clearly, 8(113 ) = 8(h 1 ) - . Now for  each point

4C  .J~ there is an 4 C J~~~, 4 C X wi th 4 = x’~ + y ~ and 
*

= d ( z~~,J~ ~ 
< 2-k The set {y~/~ y~~ > 2-r }~~ U J~ - U

k=l k=l

and hence is compact.

Since r is arbi trary we know (y~ } is compac t. Now

113 C 
~~ 

+ and h 2 C h 3 {y.} implies 8(h3 ) = 13 (h 2 ) .

This shows B(h1 ) = 8(112 )

• 

But h 2
* £ i~4(B) also (when reordered) . Hence , Ti > Ti’ . It

is obvious that Ti < Ti’ . Henc e Ti = Ti’ . Now let h c f~3(B) with

*8(h ) fl (constructed as is Theorem 4.1). Since LI is of type 3 - . -

~~~~~~~~~~~~~~~~~~~~~~ 
:
u-_

~~~~~~~~ ~~~~~~ : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
_ _ _ _ _ _
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there is an I~’ £ ~ 4 ’ (B)  such tha t h~ C 11(11 ’) . We get

*
Ti > 8(hi ’) > B o t C h ’ ) )  > 13(h ) = ri , with equality if and only if

= 0 . I t ence , we have Ti = ii ’ = 0. Now we m ay apply Lemma 3.1

to ob tain the resul t .

5. Continuous I)ependence on Parameters.

- 
Here we look at a result proved orig ina l ly  b y Ar tstein (2] for

u-contractions. The result was extended t.o u-condensing maps by

Cooperm an and will now 1)0 generalized to arbitrary measures of

noncoinpac tness.

Defini tion 5.1. We say that a convergenc e structure is given for

a set V if to certain nets {v~ ,n c N } in V (c alled the

convergen t nets) there corresponds an element v in V , deno ted by

lim V n~ 
so tha t tile following conditions are fulfilled .

(a) If  v~ = v ~ n then lim v~ = v .

(b) If lim v = v and {v} is a subnet then lim V = v.

(c) If {v
~ J does no t converge to v then a subnet of {V

n
}

exis ts , no subset of which converges to v.

A set with a convergent structure on it is called a convergence

space. Not every convergence space is topological. See Kelley [18]

on the “convergence of the iterated limit” proper ty.

Definition 5.2. Let 
~ 

be a se t of opera tors U A : X -‘ X

wi th a convergence structure on it. Then (VA ) is a collective

8-contraction if there is a k C [0,1) such that for all B £ .~~~~

- we have 13( U tJxB) k8(B). 
~~~ 

is collectively 8-condensing ifA
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~~ B C . 
~~~~~, B ( U  Ux B) < ~~(B) w i t h  equa l i t y  if and only i f  8( B )  = 0 .

Definition 5.3. A multi -valued function Y from the convergence

space ~ to the convergence space ~~ is Lu-con tinuous if
l im u~ = u, w C Y~(u~ ), and lim w = w implies w C

Remark. If ~è and ~~~
‘ are topolog ical spaces this is equivalent

to the graph bein g clo sed.

E
The f o l l o w i n g  l emma is proved by A r t s te i n  in [2 ]  and onl y

stated here.

Lemma 5.1. Let {y ~ / . k C K) be a net which is contained in a

bounded set of X.  Deno te by Ak the set (y~/ m > k}. If the

numbers a(A ) converge to zero  then there is a convergent  subnet

( y ,  n C N} of

Definition 5.4. B i_ s semi-invariant with respect to ~ if for
all  X c B there  is  a U C ‘~I with x = IJx.

For tile next theorem we will also use the following lemma .

Lemma 5.2. Lot 9’ be a collectively 8-condensing family of

operators. Let the 8-measure of noncompactness satisfy 8(A~B) = ~ (A)

if 8(B) = 0. Then Y collectively 8-condensing implies ct(B
~) 

+ 0

as i ix~~

-
~

_

~~
-
~~~% 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~ I
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Proof: Let (9.) and x . C B9 . .  We w i l l  show {x .} has a

converg ing subsequence , and then app ly Lemma 3.1.

Since x~ C B9~ t he r e  is {T
~
},(y

~
} -

~~ y0 
such tha t

x. = T.x. + y ..  Let U.: X -
~~ X be defined by U.x = T.x + y..

1 i i  1 1 1 1 1

Since {y ~~} 
~ ~~~ 

it is precompac t .  Also  U IJ1B C U T~
(B) + {y

1}

SO B C U IJ~ (B) )  < B( U T~~(B) + {y
1

}) = 8(  U T . ( B ) )  < 8(B) wi th
1 1 1

equali ty if and o n l y  i f 8(B) 0. Itence {U ~) is collectively

8-conden sing . Now since {x~ ) is semi-inv ariant with respect to

(U 1} it is precompact. This completes the proof of the lemma .

Theorem 5.1. Let X be a metric space. Let 9 be a collectively

8-condensing f ami l y of operators. Let tile B-measure be as in

Lemma 5.2. If for a certain convergence structure on 9 the map

s(T ,y) = {x/ Tx = y) is Lu-continuous , then for every closed and

bounded B the ma pping s(T ,y) fl B: Y x  X ÷ X is upper semi-

continuous.

Proof: We first make the following remark . If ‘~è is collectively

B-condensin g and B is semi-invariant with respect to ‘
~~~ then

8(B) = 0. This is a trivial consequence of the definitions .

Le t ( ( T~~y~ ) }  ÷ (T 0 , y 0) be a converg ing ne t wi th Tk C Y

and 
~k 

C X. Let Xk 
= T

kxk 
+ 

~k ’ and Xk 
£ B. We must show {X

k
}

• converges to the set s(T ,y 0) fl B. We notice s(T ,y 0) 
(‘1 B is

compact sinc e if we define T : X -‘ X by T (x) = Tx “ y0 theny0 y0
• I 8-conden sing implies T is 8-condensing . Furthermore , sincey0

s(T ,y 0) flB is invariant with respect to T , it is precompact.y0
Now , by the Lu-continuity of s(T,y) it suffices to prove the

U

I 
_ _  _ _

~~~~ t~~~J~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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exis tence of a convergent subnet . Let Ak = (X
n/ n > k). There

are k1 such that C B. with B. defined in Lemma 5.2.

Lemma 5.2 liinplics u (B1) ÷ 0 which implies u (Ak .) ÷ 0 , or

a(A
k) ÷ 0. Lemma 5.1 implies there is a convergent subnet. This

comple tes tile p roof .

6. Fixed Point Theorems.

We be g in by stating~~ o theorems p rev ious ly  proved by Sadov ski i ’ s

method o. transfinite sequences , and show they can be proved using

ordinary sequences. Then we will reprove a result of Hale and Lopes ,

which used Zorn ’s l emma , and show this can also be proved wi thou t

using Zorn ’s l emma .

Tile first is due to Sadovskii and is found in [25].

Theorem 6 .1. Let 1’: X - -  X be 6 - c o n de n s i n g  and. con t inuous .  Let

• the B-measure satisfy B (A U B) 6(A) if B is finite and

• 
8(co A) = ~(A) for any A C 9. Let B C X be closed , bounded ,

convex , and positively invariant (i.e. T(B) C B). Then ‘F has a

• fixed poin t .

Proof: Let ii: ~ ~ be defined b y 11(11) = co 1(B) . Then ii is

• asymptoticall y smooth by Corollary 4.3. Therefore , W_ (B) = (
~ H~(B)H n l

is compact, convex , invarian t under 1-1 , and attracts B. It is,

therefore positively invariant under T. Schauder fixed poin t

theorem implie s T: w_ (B) ÷ w_(B) has a fixed point.
Ii H

The second theorem is a nonrepulsive fixed point theorem by Mario

Martell i [22] .

- 

~~~

- - -
~~~~~~~
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~~~f 

Defini tion 6.1. Let Y he a nonempty subset of a ,topological

space X and f: Y ÷ Y be Continuous . A point x0 
C X is said

to be a repulsive fixed point for ~~ if ( i )  ~~(x 0) = x0,

(ii) there exists a neighborhood U of x0 such tha t for any

neighborhood V of x 0 there exists an n0 wi th the property that

U 9”(Y\V ) C Y \ U , 9 is a nonrepulsive fixed point if it is not
n-~.n0
a repuls ive  f ixed  poin t .

We w i l l  use til e f o l l o w i n g  theorem of Browder  [5 ]

Theorem 6.2. Let C be a compact , conv ex , i n f i n i te

dimensional subset of a Banach space X and let ~~: C ÷ C be

cont inuous . Then 9~ has a non-repulsive fixed poin t.

Theorem 6.3. Let B be a closed , bounded , convex , and i n f i n i te

dimensional subset of a Banach space X and let T: B -“ B be a

continuous B-condensing map , with B satisfying B(A UC) = 8(A)

if C is a finite set , and 8(co A) = 8(A). Then I has a non-

repulsive fixed point .

Proof: Let ~ C B be compact and infinite dimensional. Let

H1: ~ • Q be defined by H1 (A) = A U P. Let t~12 :  ~~ ÷ .~~~~ be

defined by [12(A) = co A. Let H: 1120U10T. ii is B-condensing ,

T,111, and 11 2 are of type 2, hence so is H. Thus , Theorem 4.1

implies H is asymptotically smooth. Continuity of T imp lies

h1 (~ ) C H(C T which impl ies  IT is asymptotically smooth. Hence,

w~ (B) = fl Fi’1(B) is compac t, co~dimensiona1 , invarian t under A’,
11*1

j
~~



• r ~

- • - _ __. -.- -•-__ • • • • • .
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and attracts B. It is also positively invariant under I.

Theorem 6.2 implies I: W~~(B) • W~-~(B) has a non-repulsive fixed

point.

The next theorem originally proved by Halo and Lopes [16] is

reproved here in more detail , to end any confusion as to its

val idi ty . I t is fo llowed b y a simp ler proof that does not use

Zorn ’s lemma (which Hale and Lopes use to prove resul t 3 above).

Theorem 6.4. Let I he 8-condensing , continuous , and compac t
2 dissipative . With 13 a measure of noncompactness satisiying I

8(A U B) = mnax [13(A),ç3 (B)] and 8(co A) = 8(A) . Then T has a

fixed point.

The proof by Itale and Lopes and the results we use below are

also found in Hale [141.

Resul t 1. ii compact , T 13-condensing, y
4
(i1) bounded implies y” (H)

is precompact and w(H) is compac t , invariant and attracts H.

Result 2 (Horn 117] ) .  If S0 C S1 C S2 are convex subsets of X ,

s0,s 2 compact , and S1 relatively open in S2, T: S2 + X is

con t inuous , y” (S 1) C S2 ,  and S0 dissipates S1, the T has a

fixed point.

Result 3 (Lemma 4.1 in h ale [14)). Suppose K C B CS are convex

subsets of X with K compact , S closed and bounded , and B open
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in S. if T: S X is continuous , ‘r~ (B) C S , and K a tt rac ts

poin ts of B , then  t h e r e  is a closed , iDundod , convex subset A of

S such tha t A = ~~ { U T~ (B fl A) } , A fl K ~ 0 .
j
~~

l

Result 4. Lemma 4.3 (Hale 1141): ~f 8 - c o n d e n s i n g  w i t h  B sa tisf ying

the cond i t ions  of Theore m 6.4 then the set A in Result 3 is

compact .

The proof  of R e s u l t  4 is given in [14 ] for  u - cond ensing bu t

genera l iz es imm edi atel y to B-condensing .

Proof 1 of’Theoreni 6.4. Let BR 
= (x/  ~xt < R} dissi pates compac t

se ts. Since orbi ts of compac t se ts are diss ipa ted by B R , they are

bounded . Hence, Result 1 holds for any compact se t .  Fur thermore ,

for any compac t se t U , w (tI) C B1~ since w (It) 
•
is compact and in-

variant. Let J = (w (ii)/ II C X compact), J C B~ and is invariant,

hence it is precomp ac t . I t also attracts compact sets. Let IC = ~~~~ J.

There is a neighborhood il l = K + B~ of K whose oroi t Y~ (H 1) is

bounded . This  is because compact dissi pative and local compact

dissipative are equ iva l en t when T is con tinuous.  Le t 11 o = K + B
~,2.

Result 3 implies there is a set A = E6’( U T 3 (H1 
fl A)}. Result 4

j>l

implies A is compact. Let S0 = H
0 

fl A1, S
1 

= Il l fl A , and
• S2 = A. Clearly, ~

4
(S1) C S2. Also S1 is compact and K attracts

compact sets , so it~ dissipates S1. This implies S0 dissipates

S1 and Result 2, Horn ’s theorem , implies I has a fixed point .

~~~~ _ _
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Proof 2 of Theorem 6.4: T13-con:Iensing imp l ies  I is asymp tot ica l ly

smooth .  Hence , for  any B ~ f~ such t h a t  y~~(B) C ~~ we have

Ul (B)  is compact , i n v a r i a n t , and a t t r a c t s  B. Let  8R be a ball of

radius R which d i s s i pates  compact se t s .  Then u l ( B )  C B R .  Let

= U {w (B ) /  B , y~ (13) C ~ 9 } .  We hav e J precompact , i n v a r i a n t ,
+

and attracts any B C ~~ for which y (B) C ~~ a l so .  In

par t icular , it attracts ne ig hborhoods  of compact  sets , since compact

d is si pa tive and local compact dissipative are e q u i v a l e n t .  Let

K = Cl co J. There is  a n e i g h b or h o o d  Il ~ = K + B~ fo r  which

‘4 (1t 1) C ~~ by the  above reasoning . Let iI~ 
= K + B

~,2. 
Let

I t :  ~~ ÷ ~~ be def ined  by 11 (B) = co 1(1F (J1 0 fl B ) ) .  11 is of

type  2 and is the composition of a B-condensing operator and the

rest  8-n on e x p an s iv e .  h ence ii is a l so  B-condens ing  and Theorem 4 . 1

imp l ies  11 is a s y m p t o t i c a l l y  smooth .  Since I t ( i ~) C 11(B) we also

have fl asymptoticall y smoo th.  Le t S = co Y~ ( I t 1) = IT(111) .  Then

11(5) C S and henc e iT~(S) i s a decreasing sequence of se ts which

approaches the nonempty compact set w (S) = fl fln (~~) which is also
1! ~ =1

convex and invarian t under IT . We a lso have w (s) positively in-
Ft

variant under T. Le t S2 = W IT(S), S1 = 

~1 
~ W IT (S) , and

S0 = H 0 fl W11(S) . Since K attracts h1
~
, 110 dissipates 

~l 
and

s0 dissipates S1. Clearly , y~ (S1) C S2. Hence , Result 2,

thorn ’s theorem , implies I has a fixed pnint .

7. Remarks.

In this section we show how some of the proofs of Cooperman

and mine are related , and also how one of Cooperman ’s resul ts do

not generalize to more arbitrary measures of noncompactness..

The important lemma used by Cooperman (8] to prove the

semi-con tinuity of tile solution map for collective1y~~ -condensing maps,

~ 
_ _ _ _ _  

_ _ _ _ _ _ _ _ _
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It
t i s the f o l l o w i n g  l emm a, which we prove for 8-condensing maps.

Lemma 7 . 1 .  Let A n be a decreasing sequence of bounded sets ,

i . e . A1 D A 2 J A3 ... . Let 1 be 13-condensing with B satisfy-

ing 6(A UB) = 13 (A)  i f  B is a fini te set and 8(A + B) = 13(A)

if 8(B) = 0. If there arc two sequences Ci k
}, { jk} such that

• d(A . ,I(A. )) ~ 0 , then  e.( A . )  ÷ 0.

Remark :  The r e s u l t  is a lso t r u e  if tile condi t ion 6(A + B) = 8(A)

i f  8(B) = 0 is rep laced  by til e condi t ion  tha t  13 is con t inuous

in the  h l ausdo r f f  mc t r  i c .

Proof: Let H1 
= {((xk,flk)} /X k 

C 1(A ) ,  
~k

If h c H1, ii = {(xk,nk)) let Ph = U {xk}. Let =

sup{ 13(Ph) / h  C H 1) .  Let g (h )  = max{k/ i, < n). • Let
I’

D~ = ( {(y~ ,n~ )}/  
~
‘k 

C A
1~ nk -

~
.oo }, 

~2 
= sup-(8(Ph)/ 11 C D2). We first

k 1 ,
show = Let II C H 1, 11 = f(x k , nk) } , 6(Ph)  = B (Pt (xk,nk)}) =

13 (Pf (Xk~ J g ( n~))})• Now there is a sc tuence {(Yk~~g(n~))} eD 2 with

iy~-x~I -
~ 0 s i n c e d(A 1~~ I (A~~~) )  ÷ 0. Itence , 8(P{(Xk~J g(fl~))}) =

~ ‘i~ ~~~~~~ < ri ,. R e v e r s i n g  the argument  shows

~ ~1• 
Hence , Ti1 = Ti 2 .  Now as in Theorem 4.1 there is an

* * *11 1 w i t h  8(11 ) = Ti1. But there is an II ’ C H 2 w i t h  TPh ’ = Ph

So ~ B(Ph’) > Ii(TPh’) = 13(i’t~ ~ 
with equality if and only

if 6(Ph’) = 0. Hence , n1 = 0 and Leituna 3.1 imp lies the existence

of a compact set which attracts A~. Hence, ~ (A~) + 0.

0

;~

- 
- 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r
1o ‘ ~.. ~~ ~~~ “~~ -~~~~‘ ~~ -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -
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\ r e s t i l  t or  Coopem’J’!:mn ’ ’; [ 8 1  which does not generalize is the
• following .

Theorem 7 . 1  ( C o o p e r m n a n ) :  Let X and Y be metric spaces , not

nec essa r i l y id en t i c a l , and let 1: X Y be u-condensing . Let Y

he separable. Suppose A 1 ~ A 2 ~2 . . . , u (A
1) 

-
~ ó and u (I (A.)) ÷ 6.

Then 6 = 0.

We gi ve the f o l l o w i n g examp le to show it does not hold for

more general measures of noncompactncss.

Example 7.1. Let I: L2 [0,T] X R ÷ L 2 [0 ,l] X R be def ined  by

a ~~< x

T(~~~,a) = ( 4 x - 2) ( 2x - 
~
.) < x <

0 x < ~~

Let 
• 
13 C L2 [0,l] X R , and le t Br = 

~~ where is the

res tr ic t ion of 9’ to [r ,l], (.,9’,a) C B ) .  We de f ine  13(B) = 0 if

B is compact , otherwise 8(B) = 1 + inf{r/ Br is compac t in

L2 (r ,l], r 1 [0,11). Let A~ = {(~~~,a )/  i~Y~I ~ 1, la l  ~ 1,
= a for x ~‘ ÷ ~-}. Then 8(A~) -‘-1~., 8(TA~) ÷l.~. , and T is

8-condensing. Itencc , the lemma does not hold in this case. We

‘ not ice  T(A~) appraches a compact set. The example could easily be

modified so it does not. Also 13-satisfies most nice properties for

measures of noncompactness except continuity in~ the Hausdorff
• me tric. If we assume B is continuous in the hlausdorff metric I

-~~ 

~ i’ ~~~~~~~~~~ ~~~~~~~~~~~~~~ •~~~!~
-
~ ~~~~~~~~~~ 

?/~~~ ,t- W!~_.~ ~TII
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do not know if the l emma is true.

I
8. L i n e a r  C o n d e n s i n g  Maps.

References for this sec t ion  are [10) , [11] , [20] , [28]  and [29]

Theorem 8.1. II I is l inear and B-condensing with a B-measure of

noncompac tness sa tis f y ing (i) 8(A U B) = 13(A)  if 8(13) = 0 and

(ii) 8(A + B) = 13(A) i f 13(B )  = 0, then r (I) I where 1 (T)

is the essential spectral radius.

Defini tion 8.1. r (1) = inf r ( T + A )  where r(T+A) is the spectral
C AEC

r ad ius  of I + A and C is tile c o l l e c t i o n  of compact  ope ra to r s .

Pro o f of Theorem 8 . 1 :  We w i l l  use the fac t  tha t  ao C a U

where  a is tile spec t rum , o~ is the  poin t  spec t rum , and o~ is

the con t inuous spec t rum . Clear ly  o is bounded s ince  I maps
• bounded sets into bounded sets. Let B2 = {x/ l x i  < 2). Let

d
U: •~-A + •~9 be a set operator with 11(A) = T(A) fl B2. II is clearly

• 8-condensing and of type 1. h ence , Theorem 4.1 implies U is

asymp tot ica l l y smooth. We will show 3o~ C for some k < 1

where Bk = {z C C/ I z i < k}.

(a) If A C a c  > 1 , and A t- a then N ( T - A I )  (the

null space of I - A l) is finite dimensional. Otherwise there is

a sequence (xe) with ci({x~}) = n > 0, Jx ,1~ I 1 such that

Tx~ = A x .  But then u (llm(~ln{x ))) - *(x ) ri > 0. Hence

a ( h l m (B ) )  > ii > 0 which contradicts the fact that II is

asymptotically smooth.

, 
~

• r

•J .L 
_ _  

_ _ _  

_ _
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(b)  t I A c 0 ’  A~ > 1 t h e n  R( T- A I )  = c i R ( T - A  1 ) ,  where
• 

- 

dim N(T-A [) < ~~. Suppose R ( T - A I )  ~ cl R(I-AI). Then the map

( T - A l ) 1 : R (T-A I) x/N(T-AI) is unbounded. So there exists a

sequence {Xn
} C X/ N(T-AI) , (x~1~ 

( = 1 and a sequence {y ~~} ~

such that (T-AI)x = y .  There is also an n > 0 such that

O~{X} = n .  For  o t h e r w i s e  a cluster point , x0 € X/ N(I-AI ) would

satisf y ( T - A I ) x () = 0 , w h i c h  is a contradictjon. It is now easily

verified that (tlm (~ m (x 1))) = L ( { x ) )  = n > 0. h ence , 1
~ ( I I hh1 (B

l
) )  >

ri > 0 w h i c h  aga in c o n t r a d i c t s  the  f ac t  t ha t  ii is asymptotically

sm oo th.

(c) If A C ~e , ~~ > 1 then dim y r ( T - A I )  < where

.. #( T- AI )  = cl { U N ( T - A J ) }  is the  g e n e r a l i z e d  nu l l  space of I - X I .

m > l
Let T’ 1)0 the restrict ion of T to ,1 (T-AI), i. e .

I’: A’ (T-AI) 4(1-Al) w i t h  T’ x = T(x). Since T ’ is a l so

B-conden sing we have dim N(I’-A I ’) < (a) and R(T’- X I )  =

c i R ( T ’ -A l’) (b).

In t h i s  p a r t  we need to u se the concep t of an index . I f

R ( T - A I )  = ci R ( T - A I )  l e t  u T A I  = dim N(T-XI) and =

codim R(T-AI). The index , KI X I  8I-AI 
- a

1~~ 1. It is clear that

if  d im 4 (1-Al) = then  Ki x i  < -1. But it is known that the

index is constant on an open set , and for  any A £ p (T), the resolvent

p set , KT A I  = 0. Ihs contradicts A C ac .

- 

• 

(d) If A £ ac , I A I  > 1, then codim ~,4” (T-AI) < ~~. We know

from (c) that dini 1 (T-AI ) < ~~. h ence there is a norma l spli tting

of X = 4 ( T - A I )  ~ Y , fo r  some subspace Y where (T-AI )Y + Y. Let

T ’ - X I ’ : Y -
~ Y. Since N(T’- A I ’ )  = {0} and R(T’-A I’) = ci R(T’-AI ’)

(b) we h ave A ~ a (T ’ -XI ’) U c (I’-XI’ ). h ence A p
~ aa (T’-XI’).

- T’ -’ •
~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~ liT - _ _
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So A C p ( T ’ )  and I ’ - A l ’  is 1 - 1 onto. h ence , codim R (T-X1 ) <~~.

(e) If A c ao , I X I  > 1 then A is a norma ! eigenvalue.

From (a) , (h )  , ( c ) , and (d)  we have 
~~~~~~~~~~~ ~ ~~ 

13T - A  ~ 
< ~‘ and

R(T-XI) = ci R(T-XI). thence , K
~.A r  

is we ll-defined. Since •

the degree is constant on an open set and A C ac we have = 0.

So, dim N ( T - A I )  = codim R (T-A I), and A is a normal eigenvaluc.

( f )  The set  o f poi nts in ao fl {X /  X~ > I } is f i ni te. We have

proved (e) that all these points a~ ’~ normal cigenvalues. I tenc e  they

ar e also i so l ated.

(g ) Sin ce we may introduce a finite dimensiona l operator A

w h i c h  s u b t r a c t s  o f f  t he  no rma l  ei genva lues  ~ith X~ > I , we ge t

a o ( T - A )  C I3~ w i t h  B 1 = ~A C 4 / I A I  < 1). thence r (T) < 1. Q.Ji .D.

I

• I

..J.•.~
,. 

-

_ _ _ _ _ _  
_ _ _
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